Introduire les différentes méthodes utilisées en vision artificielle et en imagerie numérique. Vise l'apprentissage des fondements de ce domaine. Comprendre en profondeur des notions utilisées dans le traitement numérique des images et la vision artificielle, tant du point de vue algorithmique que mathématique.
Langage de programmation Python; Installation et utilisation des modules spécialisés pour la vision artificielle et le traitement des images: NumPy, OpenCV, scikit-image, scikit-learn, tensorflow, keras; Manipulation et transformation des images; Filtrage; Espaces de couleurs; Segmentation; Observation des caractéristiques des images; Extraction des caractéristiques; Application de l'apprentissage machine classique et profond; Réalisation d'une étude complète : hypothèses, choix des outils, validation, présentation des résultats.
Formule pédagogique : Cours Magistral
Ce cours n'est dans aucun programme ouvert aux admissions.