Acquérir les connaissances pour mener un projet d'apprentissage automatique.
Fondamentaux de l'apprentissage automatique. Principes et méthodes de nettoyage des données. Sélection de variables et réduction de dimensionnalité. Entraînement de modèles. Classification de données structurées et non structurées. Algorithmes de l'apprentissage supervisé et non-supervisé. Arbre de décision, méthodes linéaires et à noyaux, centres mobiles, motifs fréquents, apprentissage d'ensemble et forêts aléatoires. Méthodologie de test et mesures de performance.
Formule pédagogique : Cours Magistral